The existence of solutions for general variational inequality and applications in FC spaces
نویسنده
چکیده
Correspondence: [email protected] Institute of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, P. R China Abstract In this article, we prove the existence of solutions for the general variational inequality j(x, y) ≥ f(x) f(y) and Minty type theorem by using the generalized KKM theorem in topological spaces without linear structure. Some properties of solutions set for the general variational inequality are studied by Minty type theorem. As applications, equivalence between Browder fixed point theorem and Ky Fan’s minimax inequality are studied in topological spaces.
منابع مشابه
ψ-pseudomonotone generalized strong vector variational inequalities with application
In this paper, we establish an existence result of the solution for an generalized strong vector variational inequality already considered in the literature and as applications we obtain a new coincidence point theorem in Hilbert spaces.
متن کاملExistence of solutions for a variational inequality on the half-line
In this paper we study the existence of nontrivial solutions for a variational inequality on the half-line. Our approach is based on the non-smooth critical point theory for Szulkin-type functionals.
متن کاملExistence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application
This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملExistence of three solutions for a class of fractional boundary value systems
In this paper, under appropriate oscillating behaviours of the nonlinear term, we prove some multiplicity results for a class of nonlinear fractional equations. These problems have a variational structure and we find three solutions for them by exploiting an abstract result for smooth functionals defined on a reflexive Banach space. To make the nonlinear methods work, some careful analysis of t...
متن کامل